Dynamic Determination of Active-Site Reactivity in Semiquinone Photolyase by the Cofactor Photoreduction

نویسندگان

  • Zheyun Liu
  • Chuang Tan
  • Xunmin Guo
  • Jiang Li
  • Lijuan Wang
  • Dongping Zhong
چکیده

Photolyase contains a flavin cofactor in a fully reduced form as its functional state to repair ultraviolet-damaged DNA upon blue light absorption. However, after purification, the cofactor exists in its oxidized or neutral semiquinone state. Such oxidization eliminates the repair function, but it can be reverted by photoreduction, a photoinduced process with a series of electron-transfer (ET) reactions. With femtosecond absorption spectroscopy and site-directed mutagenesis, we completely recharacterized such photoreduction dynamics in the semiquinone state. Comparing with all previous studies, we identified a new intramolecular ET pathway, determined stretched ET behaviors, refined all ET time scales, and finally evaluated the driving forces and reorganization energies for eight elementary ET reactions. Combined with the oxidized-state photoreduction dynamics, we elucidated the different active-site properties of the reduction ability and structural flexibility in the oxidized and semiquinone states, leading to the dramatically different ET dynamics and photoreduction efficiency in the two states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic determination of the functional state in photolyase and the implication for cryptochrome.

The flavin adenine dinucleotide cofactor has an unusual bent configuration in photolyase and cryptochrome, and such a folded structure may have a functional role in initial photochemistry. Using femtosecond spectroscopy, we report here our systematic characterization of cyclic intramolecular electron transfer (ET) dynamics between the flavin and adenine moieties of flavin adenine dinucleotide i...

متن کامل

The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.

Cryptochrome (Cry) photoreceptors share high sequence and structural similarity with DNA repair enzyme DNA-photolyase and carry the same flavin cofactor. Accordingly, DNA-photolyase was considered a model system for the light activation process of cryptochromes. In line with this view were recent spectroscopic studies on cryptochromes of the CryDASH subfamily that showed photoreduction of the f...

متن کامل

Direct Determination of Resonance Energy Transfer in Photolyase: Structural Alignment for the Functional State

Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resona...

متن کامل

Determining complete electron flow in the cofactor photoreduction of oxidized photolyase.

The flavin cofactor in photoenzyme photolyase and photoreceptor cryptochrome may exist in an oxidized state and should be converted into reduced state(s) for biological functions. Such redox changes can be efficiently achieved by photoinduced electron transfer (ET) through a series of aromatic residues in the enzyme. Here, we report our complete characterization of photoreduction dynamics of ph...

متن کامل

Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014